Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EJNMMI Res ; 14(1): 29, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498285

RESUMO

BACKGROUND: Cancer stem cells play an important role in driving tumor growth and treatment resistance, which makes them a promising therapeutic target to prevent cancer recurrence. Emerging cancer stem cell-targeted therapies would benefit from companion diagnostic imaging probes to aid in patient selection and monitoring response to therapy. To this end, zirconium-89-radiolabeled immunoPET probes that target the cancer stem cell-antigen CD133 were developed using fully human antibody and antibody scFv-Fc scaffolds. RESULTS: ImmunoPET probes [89Zr]-DFO-RW03IgG (CA = 0.7 ± 0.1), [89Zr]-DFO-RW03IgG (CA = 3.0 ± 0.3), and [89Zr]-DFO-RW03scFv - Fc (CA = 2.9 ± 0.3) were radiolabeled with zirconium-89 (radiochemical yield 42 ± 5%, 97 ± 2%, 86 ± 12%, respectively) and each was isolated in > 97% radiochemical purity with specific activities of 120 ± 30, 270 ± 90, and 200 ± 60 MBq/mg, respectively. In vitro binding assays showed a low-nanomolar binding affinity of 0.6 to 1.1 nM (95% CI) for DFO-RW03IgG (CA = 0.7 ± 0.1), 0.3 to 1.9 nM (95% CI) for DFO-RW03IgG (CA = 3.0 ± 0.3), and 1.5 to 3.3 nM (95% CI) for DFO-RW03scFv - Fc (C/A = 0.3). Biodistribution studies found that [89Zr]-DFO-RW03scFv - Fc (CA = 2.9 ± 0.3) exhibited the highest tumor uptake (23 ± 4, 21 ± 2, and 23 ± 4%ID/g at 24, 48, and 72 h, respectively) and showed low uptake (< 6%ID/g) in all off-target organs at each timepoint (24, 48, and 72 h). Comparatively, [89Zr]-DFO-RW03IgG (CA = 0.7 ± 0.1) and [89Zr]-DFO-RW03IgG (CA = 3.0 ± 0.3) both reached maximum tumor uptake (16 ± 3%ID/g and 16 ± 2%ID/g, respectively) at 96 h p.i. and showed higher liver uptake (10.2 ± 3%ID/g and 15 ± 3%ID/g, respectively) at that timepoint. Region of interest analysis to assess PET images of mice administered [89Zr]-DFO-RW03scFv - Fc (CA = 2.9 ± 0.3) showed that this probe reached a maximum tumor uptake of 22 ± 1%ID/cc at 96 h, providing a tumor-to-liver ratio that exceeded 1:1 at 48 h p.i. Antibody-antigen mediated tumor uptake was demonstrated through biodistribution and PET imaging studies, where for each probe, co-injection of excess unlabeled RW03IgG resulted in > 60% reduced tumor uptake. CONCLUSIONS: Fully human CD133-targeted immunoPET probes [89Zr]-DFO-RW03IgG and [89Zr]-DFO-RW03scFv - Fc accumulate in CD133-expressing tumors to enable their delineation through PET imaging. Having identified [89Zr]-DFO-RW03scFv - Fc (CA = 2.9 ± 0.3) as the most attractive construct for CD133-expressing tumor delineation, the next step is to evaluate this probe using patient-derived tumor models to test its detection limit prior to clinical translation.

2.
J Med Chem ; 66(9): 6025-6036, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37129217

RESUMO

A near-infrared photoacoustic probe was used to image bone in vivo through active and bioorthogonal pretargeting strategies that utilized coupling between a tetrazine-derived cyanine dye and a trans-cyclooctene-modified bisphosphonate. In vitro hydroxyapatite binding of the probe via active and pretargeting strategies showed comparable increases in percent binding vs a nontargeted control. Intrafemoral injection of the bisphosphonate-dye conjugate showed retention out to 24 h post-injection, with a 14-fold increase in signal over background, while the nontargeted dye exhibited negligible binding to bone and signal washout by 4 h post-injection. Intravenous injection, using both active and pretargeting strategies, demonstrated bone accumulation as earlier as 4 h post-injection, where the signal was found to be 3.6- and 1.5-fold higher, respectively, than the signal from the nontargeted dye. The described bone-targeted dye enabled in vivo photoacoustic imaging, while the synthetic strategy provides a convenient building block for developing new targeted photoacoustic probes.


Assuntos
Compostos Heterocíclicos , Técnicas Fotoacústicas , Diagnóstico por Imagem , Osso e Ossos/diagnóstico por imagem , Difosfonatos
3.
Mol Pharm ; 18(7): 2647-2656, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34160225

RESUMO

Building on clinical case reports of the abscopal effect, there has been considerable interest in the synergistic effects of radiation and immunotherapies for the treatment of cancer. Here, the first radiolabeled antibody-recruiting small molecule that can chelate a variety of cytotoxic radionuclides is described. The platform consists of a tunable antibody-binding domain against a serum antibody of interest (e.g., dinitrophenyl hapten) to recruit endogenous antibodies that activate effector cell function, a chelate capable of binding diagnostic and therapeutic radiometals, and a tetrazine for bioorthogonal coupling with trans-cyclooctene-modified targeting vectors. The dinitrophenyl-tetrazine ligand was shown to both affect dose-dependent antibody recruitment and immune cell function (phagocytosis) in vitro, and the bisphosphonate 177Lu-complex was shown to accumulate at sites of calcium accretion in vivo, which was achieved using both active and pretargeting strategies.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacocinética , Cálcio/metabolismo , Dinitrobenzenos/química , Lutécio/química , Compostos Radiofarmacêuticos/química , Bibliotecas de Moléculas Pequenas/química , Animais , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Fagocitose , Distribuição Tecidual
4.
Mol Pharm ; 17(9): 3369-3377, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32697098

RESUMO

A new photoacoustic (PA) dye was developed as a simple-to-use reagent for creating targeted PA imaging agents. The lead molecule was prepared via an efficient two-step synthesis from an inexpensive commercially available starting material. With the dye's innate albumin-binding properties, the resulting tetrazine-derived dye is capable of localizing to tumor and exhibits a biological half-life of a few hours, allowing for an optimized distribution profile. The presence of tetrazine in turn makes it possible to link the albumin-binding optoacoustic signaling agent to a wide range of targeting molecules. To demonstrate the utility and ease of use of the platform, a novel PA probe for imaging calcium accretion was generated using a single-step bioorthogonal coupling reaction where high-resolution PA images of the knee joint in mice were obtained as early as 1 h post injection. Whole-body distribution was subsequently determined by labeling the probe with 99mTc and performing tissue counting following necropsy. These studies, along with tumor imaging and in vitro albumin binding studies, revealed that the core PA contrast agent can be imaged in vivo and can be easily linked to targeting molecules for organ-specific uptake.


Assuntos
Corantes Fluorescentes/química , Compostos Heterocíclicos com 1 Anel/química , Animais , Linhagem Celular Tumoral , Diagnóstico por Imagem/métodos , Feminino , Compostos Heterocíclicos/química , Humanos , Articulação do Joelho/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Técnicas Fotoacústicas/métodos
5.
Mol Imaging Biol ; 20(2): 230-239, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28956265

RESUMO

PURPOSE: Contrast-enhanced ultrasound plays an expanding role in oncology, but its applicability to molecular imaging is hindered by a lack of nanoscale contrast agents that can reach targets outside the vasculature. Gas vesicles (GVs)-a unique class of gas-filled protein nanostructures-have recently been introduced as a promising new class of ultrasound contrast agents that can potentially access the extravascular space and be modified for molecular targeting. The purpose of the present study is to determine the quantitative biodistribution of GVs, which is critical for their development as imaging agents. PROCEDURES: We use a novel bioorthogonal radiolabeling strategy to prepare technetium-99m-radiolabeled ([99mTc])GVs in high radiochemical purity. We use single photon emission computed tomography (SPECT) and tissue counting to quantitatively assess GV biodistribution in mice. RESULTS: Twenty minutes following administration to mice, the SPECT biodistribution shows that 84 % of [99mTc]GVs are taken up by the reticuloendothelial system (RES) and 13 % are found in the gall bladder and duodenum. Quantitative tissue counting shows that the uptake (mean ± SEM % of injected dose/organ) is 0.6 ± 0.2 for the gall bladder, 46.2 ± 3.1 for the liver, 1.91 ± 0.16 for the lungs, and 1.3 ± 0.3 for the spleen. Fluorescence imaging confirmed the presence of GVs in RES. CONCLUSIONS: These results provide essential information for the development of GVs as targeted nanoscale imaging agents for ultrasound.


Assuntos
Acústica , Nanoestruturas/química , Proteínas/química , Compostos Radiofarmacêuticos/química , Animais , Feminino , Fluorescência , Imageamento Tridimensional , Fígado/diagnóstico por imagem , Camundongos , Baço/diagnóstico por imagem , Tecnécio/química , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único
6.
Nucl Med Biol ; 54: 27-33, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28863330

RESUMO

INTRODUCTION: Nanoscale perfluorocarbon (PFC) droplets have been used to create imaging agents and drug delivery vehicles. However, development and characterization of new formulations of PFC droplets are hindered because of the lack of simple methods for quantitative and sensitive assessment of whole body tissue distribution and pharmacokinetics of the droplets. To address this issue, a general-purpose method for radiolabeling the inner core of nanoscale perfluorocarbon droplets with a hydrophobic and lipophobic fluorine-18 compound was developed, so that positron emission tomography (PET) and quantitative biodistribution studies can be employed to evaluate PFC nanodroplets in vivo. METHODS: A robust method to produce [18F]CF3(CF2)7(CH2)3F from a tosylate precursor using [18F]F- was developed. The product's effectiveness as a general label for different PFCs and its ability to distinguish the in vivo behavior of different PFC droplet formulations was evaluated using two types of PFC nanodroplets: fluorosurfactant-stabilized perfluorohexane (PFH) nanodroplets and lipid-stabilized perfluorooctylbromide (PFOB) nanodroplets. In vivo assessment of the 18F-labeled PFH and PFOB nanodroplets were conducted in normal mice following intravenous injection using small animal PET imaging and gamma counting of tissues and fluids. RESULTS: [18F]CF3(CF2)7(CH2)3F was produced in modest yield and was stable with respect to loss of fluoride in vitro. The labeled fluorocarbon was successfully integrated into PFH nanodroplets (~175 nm) and PFOB nanodroplets (~260 nm) without altering their mean sizes, size distributions, or surface charges compared to their non-radioactive analogues. No leakage of the radiolabel from the nanodroplets was detected after droplet formation in vitro. PET imaging and biodistribution data for the two droplet types tested showed significantly different tissue uptake and clearance patterns. CONCLUSION: A convenient method for producing 18F-labeled PFC droplets was developed. The results highlight the potential utility of the strategy for pre-clinical evaluation of different PFC droplet formulations through direct PFC core labeling using a fluorinated radiolabel.


Assuntos
Radioisótopos de Flúor , Fluorocarbonos/química , Tomografia por Emissão de Pósitrons/métodos , Animais , Feminino , Fluorocarbonos/farmacocinética , Meia-Vida , Marcação por Isótopo , Camundongos , Nanoestruturas/química , Solubilidade , Distribuição Tecidual
7.
Dalton Trans ; 46(42): 14691-14699, 2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-28640297

RESUMO

The aim of this work was to synthesize and evaluate [2 + 1] 99mTc(i) polypyridine complexes containing tetrazines, which along with the corresponding Re(i) complexes, represent a new class of isostructural nuclear and turn-on luminescent probes that can be derivatized and targeted using bioorthogonal chemistry. To this end, [2 + 1] complexes of 99mTc(i) of the type [99mTc(CO)3(N^N)(L)] (N^N = bathophenanthroline disulfonate (BPS) or 2,2'-bipyridine (bipy)), where the monodentate ligand (L) was a tetrazine linked to the metal through an imidazole derivative, were prepared. The desired products were obtained in nearly quantitative radiochemical yield by adding [99mTc(CO)3(N^N)(OH2)]n to the imidazole-tetrazine ligand and heating at 60 °C for 30 min. Measurement of the reaction kinetics between the tetrazine and (E)-cyclooct-4-enol revealed a second-order rate constant of 8.6 × 103 M-1 s-1 at 37 °C, which is suitable for in vivo applications that require rapid coupling. Stability studies showed that the metal complexes were resistant to ligand challenge and exhibited reasonable protein binding in vitro. Biodistribution studies of the more water-soluble BPS derivative in normal mice, one hour after administration of a bisphosphonate derivative of trans-cyclooctene (TCO-BP), revealed high activity concentrations in the knee (9.3 ± 0.3 %ID g-1) and shoulder (5.3 ± 0.7 %ID g-1). Using the same pretargeting approach, SPECT/CT imaging showed that the [2 + 1] tetrazine complex localized to implanted skeletal tumors. This is the first report of the preparation of 99mTc complexes of BPS and demonstration that their tetrazine derivatives can be used to prepare targeted imaging probes by employing bioorthogonal chemistry.


Assuntos
Compostos de Organotecnécio/química , Radioquímica/métodos , Transporte de Elétrons , Compostos de Organotecnécio/farmacocinética , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único
8.
Mol Imaging Biol ; 19(6): 923-932, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28639122

RESUMO

PURPOSE: Prostate-specific membrane antigen (PSMA) is an important biomarker expressed in the majority of prostate cancers. The favorable positron emission tomography (PET) imaging profile of the PSMA imaging agent 2-(3-(1-carboxy-5-[(6-[18F]fluoro-pyridine-3-carbonyl)-amino]-pentyl)-ureido)-pentane-dioic acid [18F]DCFPyL in preclinical prostate cancer models and in prostate cancer patients stimulated the development and validation of other fluorine-containing PSMA inhibitors to further enhance pharmacokinetics and simplify production methods. Here, we describe the synthesis and radiopharmacological evaluation of various F-18-labeled PSMA inhibitors which were prepared through different prosthetic group chemistry strategies. PROCEDURES: Prosthetic groups N-succinimidyl-4-[18F]fluorobenzoate ([18F]SFB), 4-[18F]fluorobenzaldehyde, and 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) were used for bioconjugation reactions to PSMA-binding lysine-urea-glutamate scaffold via acylation and oxime formation. All fluorine-containing PSMA inhibitors were tested for their PSMA inhibitory potency in an in vitro competitive binding assay in comparison to an established reference compound [125I]TAAG-PSMA. Tumor uptake and clearance profiles of three F-18-labeled PSMA inhibitors ([18F]4, [18F]7, and [18F]8) were studied with dynamic PET imaging using LNCaP tumor-bearing mice. RESULTS: F-18-labeled PSMA inhibitors were synthesized in 32-69 % radiochemical yields using (1) acylation reaction at the primary amino group of the lysine residue with [18F]SFB and (2) oxime formation with 4-[18F]fluorobenzaldehyde and [18F]FDG using the respective aminooxy-functionalized lysine residue. Compound 7 displayed an IC50 value of 6 nM reflecting very high affinity for PSMA. Compounds 4 and 8 showed IC50 values of 13 and 62 nM, respectively. The IC50 value of reference compound DCFPyL was 13 nM. Dynamic PET imaging revealed the following SUV60min for radiotracer uptake in PSMA(+) LNCaP tumors: 0.98 ([18F]DCFPyL), 2.11 ([18F]7), 0.40 ([18F]4), and 0.19 ([18F]8). CONCLUSION: The observed tumor uptake and clearance profiles demonstrate the importance of the selected prosthetic group on the pharmacokinetic profile of analyzed PSMA-targeting radiotracers. Radiotracer [18F]7 displayed the highest uptake and retention in LNCaP tumors, which exceeded uptake values of reference compound [18F]DCFPyL by more than 100 %. Despite the higher kidney and liver uptake and retention of compound [18F]7, the simple radiosynthesis and the exceptionally high tumor uptake (SUV60min 2.11) and retention make radiotracer [18F]7 an interesting alternative to radiotracer [18F]DCFPyL for PET imaging of PSMA in prostate cancer.


Assuntos
Radioisótopos de Flúor/química , Antígeno Prostático Específico/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Animais , Linhagem Celular Tumoral , Concentração Inibidora 50 , Masculino , Camundongos Endogâmicos BALB C , Tomografia por Emissão de Pósitrons , Fatores de Tempo
9.
PLoS One ; 12(5): e0176958, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28472168

RESUMO

Prostate specific membrane antigen (PSMA) targeted microbubbles (MBs) were developed using bioorthogonal chemistry. Streptavidin-labeled MBs were treated with a biotinylated tetrazine (MBTz) and targeted to PSMA expressing cells using trans-cyclooctene (TCO)-functionalized anti-PSMA antibodies (TCO-anti-PSMA). The extent of MB binding to PSMA positive cells for two different targeting strategies was determined using an in vitro flow chamber. The initial approach involved pretargeting, where TCO-anti-PSMA was first incubated with PSMA expressing cells and followed by MBTz, which subsequently showed a 2.8 fold increase in the number of bound MBs compared to experiments performed in the absence of TCO-anti-PSMA. Using direct targeting, where TCO-anti-PSMA was linked to MBTz prior to initiation of the assay, a 5-fold increase in binding compared to controls was observed. The direct targeting approach was subsequently evaluated in vivo using a human xenograft tumor model and two different PSMA-targeting antibodies. The US signal enhancements observed were 1.6- and 5.9-fold greater than that for non-targeted MBs. The lead construct was also evaluated in a head-to-head study using mice bearing both PSMA positive or negative tumors in separate limbs. The human PSMA expressing tumors exhibited a 2-fold higher US signal compared to those tumors deficient in human PSMA. The results demonstrate both the feasibility of preparing PSMA-targeted MBs and the benefits of using bioorthogonal chemistry to create targeted US probes.


Assuntos
Antígenos de Superfície/metabolismo , Glutamato Carboxipeptidase II/metabolismo , Microbolhas , Neoplasias da Próstata/imunologia , Ultrassom , Animais , Anticorpos/imunologia , Antígenos de Superfície/imunologia , Glutamato Carboxipeptidase II/imunologia , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Nus , Neoplasias da Próstata/patologia
10.
Inorg Chem ; 56(5): 2958-2965, 2017 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-28199089

RESUMO

Bathophenanthrolinedisulfonate (BPS) complexes of technetium(I) of the type [Tc(CO)3(BPS)(L)]n (L = imidazole derivatives) were synthesized and evaluated both in vitro and in vivo. [99mTc(CO)3(BPS)(MeIm)]- (MeIm = 1-methyl-1H-imidazole) was prepared in near-quantitative yield using a convenient two-step, one-pot labeling procedure. A targeted analogue capable of binding regions of calcium turnover associated with bone metabolism was also prepared. Here, a bisphosphonate was linked to the metal through an imidazole ligand to give [99mTc(CO)3(BPS)(ImAln)]2- (ImAln = an imidazole-alendronate ligand) in high yield. The technetium(I) complexes were stable in vitro, and in biodistribution studies, [99mTc(CO)3(BPS)(ImAln)]2- exhibited rapid clearance from nontarget tissues and significant accumulation in the shoulder (7.9 ± 0.2% ID/g) and knees (15.1 ± 0.9% ID/g) by 6 h, with the residence time in the skeleton reaching 24 h. A rhenium analogue, which is luminescent and has the same structure, was also prepared and used for fluorescence labeling of cells in vitro. The data reported demonstrate the potential of this class of compounds for use in creating isostructural optical and nuclear probes.

11.
J Vis Exp ; (120)2017 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-28190049

RESUMO

Pre-targeting combined with bioorthogonal chemistry is emerging as an effective way to create new radiopharmaceuticals. Of the methods available, the inverse electron demand Diels-Alder (IEDDA) cycloaddition between a radiolabeled tetrazines and trans-cyclooctene (TCO) linked to a biomolecule has proven to be a highly effective bioorthogonal approach to imaging specific biological targets. Despite the fact that technetium-99m remains the most widely used isotope in diagnostic nuclear medicine, there is a scarcity of methods for preparing 99mTc-labeled tetrazines. Herein we report the preparation of a family of tridentate-chelate-tetrazine derivatives and their Tc(I) complexes. These hitherto unknown compounds were radiolabeled with 99mTc using a microwave-assisted method in 31% to 83% radiochemical yield. The products are stable in saline and PBS and react rapidly with TCO derivatives in vitro. Their in vivo pre-targeting abilities were demonstrated using a TCO-bisphosphonate (TCO-BP) derivative that localizes to regions of active bone metabolism or injury. In murine studies, the 99mTc-tetrazines showed high activity concentrations in knees and shoulder joints, which was not observed when experiments were performed in the absence of TCO-BP. The overall uptake in non-target organs and pharmacokinetics varied greatly depending on the nature of the linker and polarity of the chelate.


Assuntos
Quelantes/farmacologia , Ciclo-Octanos/química , Tecnécio/farmacologia , Animais , Reação de Cicloadição , Difosfonatos/análise , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Animais , Compostos Radiofarmacêuticos/química
13.
Chemistry ; 23(2): 254-258, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-27768812

RESUMO

Hydrocyanine dyes are sensitive "turn-on" type optical probes that can detect reactive oxygen species (ROS). We have developed a method to prepare an 18 F-labeled hydrocyanine dye as a multi-modal PET and optical "turn-on" probe. A commercially available near infrared (NIR) dye was modified with a fluorinated prosthetic group that did not alter its ROS sensing properties in the presence of superoxide and hydroxyl radicals. The 18 F-labeled analogue was produced using a single-step terminal fluorination procedure. Positron emission tomography (PET) imaging and quantitative in vivo biodistribution studies indicated this novel probe had remarkably different pharmacokinetics compared to the oxidized cyanine analogue. The chemistry reported enables the use of quantitative and dynamic PET imaging for the in vivo study of hydrocyanine dyes as ROS probes.


Assuntos
Carbocianinas/química , Corantes Fluorescentes/química , Radioisótopos de Flúor/química , Tomografia por Emissão de Pósitrons/métodos , Espécies Reativas de Oxigênio/análise , Animais , Carbocianinas/farmacocinética , Linhagem Celular Tumoral , Corantes Fluorescentes/farmacocinética , Radioisótopos de Flúor/farmacocinética , Halogenação , Humanos , Camundongos , Distribuição Tecidual
14.
PLoS One ; 11(12): e0167425, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27936007

RESUMO

A convenient strategy to radiolabel a hydrazinonicotonic acid (HYNIC)-derived tetrazine with 99mTc was developed, and its utility for creating probes to image bone metabolism and bacterial infection using both active and pretargeting strategies was demonstrated. The 99mTc-labelled HYNIC-tetrazine was synthesized in 75% yield and exhibited high stability in vitro and in vivo. A trans-cyclooctene (TCO)-labelled bisphosphonate (TCO-BP) that binds to regions of active calcium metabolism was used to evaluate the utility of the labelled tetrazine for bioorthogonal chemistry. The pretargeting approach, with 99mTc-HYNIC-tetrazine administered to mice one hour after TCO-BP, showed significant uptake of radioactivity in regions of active bone metabolism (knees and shoulders) at 6 hours post-injection. For comparison, TCO-BP was reacted with 99mTc-HYNIC-tetrazine before injection and this active targeting also showed high specific uptake in the knees and shoulders, whereas control 99mTc-HYNIC-tetrazine alone did not. A TCO-vancomycin derivative was similarly employed for targeting Staphylococcus aureus infection in vitro and in vivo. Pretargeting and active targeting strategies showed 2.5- and 3-fold uptake, respectively, at the sites of a calf-muscle infection in a murine model, compared to the contralateral control muscle. These results demonstrate the utility of the 99mTc-HYNIC-tetrazine for preparing new technetium radiopharmaceuticals, including those based on small molecule targeting constructs containing TCO, using either active or pretargeting strategies.


Assuntos
Osso e Ossos/diagnóstico por imagem , Ciclo-Octanos/farmacocinética , Difosfonatos/farmacocinética , Compostos Heterocíclicos com 1 Anel/farmacocinética , Hidrazinas/farmacocinética , Ácidos Nicotínicos/farmacocinética , Infecções Estafilocócicas/diagnóstico por imagem , Tecnécio/farmacocinética , Vancomicina/farmacocinética , Animais , Ciclo-Octanos/química , Difosfonatos/química , Feminino , Compostos Heterocíclicos com 1 Anel/química , Hidrazinas/química , Camundongos , Ácidos Nicotínicos/química , Cintilografia/métodos , Staphylococcus aureus/isolamento & purificação , Tecnécio/química , Distribuição Tecidual , Vancomicina/química
15.
J Med Chem ; 59(20): 9381-9389, 2016 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-27676258

RESUMO

A high yield synthesis of a novel, small molecule, bisphosphonate-modified trans-cyclooctene (TCO-BP, 2) that binds to regions of active bone metabolism and captures functionalized tetrazines in vivo, via the bioorthogonal inverse electron demand Diels-Alder (IEDDA) cycloaddition, was developed. A 99mTc-labeled derivative of 2 demonstrated selective localization to shoulder and knee joints in a biodistribution study in normal mice. Compound 2 reacted rapidly with a 177Lu-labeled tetrazine in vitro, and pretargeting experiments in mice, using 2 and the 177Lu-labeled tetrazine, yielded high activity concentrations in shoulder and knee joints, with minimal uptake in other tissues. Pretargeting experiments with 2 and a novel 99mTc-labeled tetrazine also produced high activity concentrations in the knees and shoulders. Critically, both radiolabeled tetrazines showed negligible uptake in the skeleton and joints when administered in the absence of 2. Compound 2 can be utilized to target functionalized tetrazines to bone and represents a convenient reagent to test novel tetrazines for use with in vivo bioorthogonal pretargeting strategies.


Assuntos
Osso e Ossos/metabolismo , Ciclo-Octanos/farmacocinética , Lutécio/farmacocinética , Compostos de Tecnécio/farmacocinética , Tetrazóis/farmacocinética , Animais , Osso e Ossos/química , Ciclo-Octanos/administração & dosagem , Ciclo-Octanos/química , Relação Dose-Resposta a Droga , Feminino , Lutécio/química , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Radioisótopos , Relação Estrutura-Atividade , Compostos de Tecnécio/química , Tetrazóis/química , Distribuição Tecidual
16.
EJNMMI Res ; 6(1): 40, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27142881

RESUMO

BACKGROUND: Prostate-specific membrane antigen (PSMA) is frequently overexpressed and upregulated in prostate cancer. To date, various (18)F- and (68)Ga-labeled urea-based radiotracers for PET imaging of PSMA have been developed and entered clinical trials. Here, we describe an automated synthesis of [(18)F]DCFPyL via direct radiofluorination and validation in preclinical models of prostate cancer. METHODS: [(18)F]DCFPyL was synthesized via direct nucleophilic heteroaromatic substitution reaction in a single reactor TRACERlab FXFN automated synthesis unit. Radiopharmacological evaluation of [(18)F]DCFPyL involved internalization experiments, dynamic PET imaging in LNCaP (PSMA+) and PC3 (PSMA-) tumor-bearing BALB/c nude mice, biodistribution studies, and metabolic profiling. In addition, reversible two-tissue compartmental model analysis was used to quantify pharmacokinetics of [(18)F]DCFPyL in LNCaP and PC3 tumor models. RESULTS: Automated radiosynthesis afforded radiotracer [(18)F]DCFPyL in decay-corrected radiochemical yields of 23 ± 5 % (n = 10) within 55 min, including HPLC purification. Dynamic PET analysis revealed rapid and high uptake of radioactivity (SUV5min 0.95) in LNCaP tumors which increased over time (SUV60min 1.1). Radioactivity uptake in LNCaP tumors was blocked in the presence of nonradioactive DCFPyL (SUV60min 0.22). The muscle as reference tissue showed rapid and continuous clearance over time (SUV60min 0.06). Fast blood clearance of radioactivity resulted in tumor-blood ratios of 1.0 after 10 min and 8.3 after 60 min. PC3 tumors also showed continuous clearance of radioactivity over time (SUV60min 0.11). Kinetic analysis of PET data revealed the two-tissue compartmental model as best fit with K 1 = 0.12, k 2 = 0.18, k 3 = 0.08, and k 4 = 0.004 min(-1), confirming molecular trapping of [(18)F]DCFPyL in PSMA+ LNCaP cells. CONCLUSIONS: [(18)F]DCFPyL can be prepared for clinical applications simply and in good radiochemical yields via a direct radiofluorination synthesis route in a single reactor automated synthesis unit. Radiopharmacological evaluation of [(18)F]DCFPyL confirmed high PSMA-mediated tumor uptake combined with superior clearance parameters. Compartmental model analysis points to a two-step molecular trapping mechanism based on PSMA binding and subsequent internalization leading to retention of radioactivity in PSMA+ LNCaP tumors.

17.
J Med Chem ; 59(6): 2660-73, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-26894427

RESUMO

The feasibility of developing a single agent that can deliver radioactive iodine and also direct cellular immune function by engaging endogenous antibodies as an antibody-recruiting small molecule (ARM) was determined. A library of new prostate-specific membrane antigen (PSMA)-binding ligands that contained antibody-recruiting 2,4-dinitrophenyl (DNP) groups and iodine were synthesized and screened in vitro and in vivo. A lead compound (9b) showed high affinity for PSMA and the ability to bind anti-DNP antibodies. Biodistribution studies of the iodine-125 analogue showed 3% ID/g in LNCaP xenograft tumors at 1 h postinjection with tumor-to-blood and tumor-to-muscle ratios of 10:1 and 44:1, respectively. The radiolabeled analogue was bound and internalized by LNCaP cells, with both functions blocked using a known PSMA inhibitor. A second candidate showed high tumor uptake (>10% ID/g) but had minimal binding to anti-DNP antibodies. The compounds reported represent the first examples of small molecules developed specifically for combination immunotherapy and radiotherapy for prostate cancer.


Assuntos
Antígenos de Neoplasias/efeitos dos fármacos , Antígeno Prostático Específico/imunologia , Neoplasias da Próstata/terapia , Radioimunoterapia/métodos , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/farmacologia , Animais , Linhagem Celular Tumoral , Dinitrofenóis/síntese química , Dinitrofenóis/farmacologia , Feminino , Humanos , Ligantes , Masculino , Camundongos , Camundongos Nus , Neoplasias da Próstata/metabolismo , Compostos Radiofarmacêuticos/farmacocinética , Bibliotecas de Moléculas Pequenas , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Bioconjug Chem ; 27(1): 207-16, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26699913

RESUMO

A convenient method to prepare radioiodinated tetrazines was developed, such that a bioorthogonal inverse electron demand Diels-Alder reaction can be used to label biomolecules with iodine-125 for in vitro screening and in vivo biodistribution studies. The tetrazine was prepared by employing a high-yielding oxidative halo destannylation reaction that concomitantly oxidized the dihydrotetrazine precursor. The product reacts quickly and efficiently with trans-cyclooctene derivatives. Utility was demonstrated through antibody and hormone labeling experiments and by evaluating products using standard analytical methods, in vitro assays, and quantitative biodistribution studies where the latter was performed in direct comparison to Bolton-Hunter and direct iodination methods. The approach described provides a convenient and advantageous alternative to conventional protein iodination methods that can expedite preclinical development and evaluation of biotherapeutics.


Assuntos
Radioisótopos do Iodo/química , Marcação por Isótopo/métodos , Animais , Anticorpos/química , Linhagem Celular Tumoral , Cristalografia por Raios X , Reação de Cicloadição , Ciclo-Octanos/química , Feminino , Compostos Heterocíclicos/química , Humanos , Radioisótopos do Iodo/farmacocinética , Camundongos Endogâmicos C57BL , Receptor de Insulina/metabolismo , Distribuição Tecidual , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/imunologia
19.
Biomacromolecules ; 16(9): 3033-41, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26295201

RESUMO

A fifth generation aliphatic polyester dendrimer was functionalized with vinyl groups at the periphery and a dipicolylamine Tc(I) chelate at the core. This structure was PEGylated with three different molecular weight mPEGs (mPEG160, mPEG350, and mPEG750) using thiol-ene click chemistry. The size of the resulting macromolecules was evaluated using dynamic light scattering, and it was found that the dendrimer functionalized with mPEG750 was molecularly dispersed in water, exhibiting a hydrodynamic diameter of 9.2 ± 2.1 nm. This PEGylated dendrimer was subsequently radiolabeled using [(99m)Tc(CO)3(H2O)3](+) and purified to high (>99%) radiochemical purity. Imaging studies were initially performed on healthy rats to allow comparison to previous Tc-labeled dendrimers and then on xenograft murine tumor models, which collectively showed that the dendrimers circulated in the blood for an extended period of time (up to 24 h). Furthermore, the radiolabeled dendrimer accumulated in H520 xenograft tumors, which could be visualized by single-photon emission computed tomography (SPECT). The reported PEGylated aliphatic polyester dendrimers represent a new platform for developing tumor-targeted molecular imaging probes and therapeutics.


Assuntos
Dendrímeros , Marcação por Isótopo , Neoplasias Experimentais/tratamento farmacológico , Poliésteres , Polietilenoglicóis , Tecnécio , Animais , Dendrímeros/síntese química , Dendrímeros/química , Dendrímeros/farmacologia , Feminino , Humanos , Camundongos , Camundongos Nus , Neoplasias Experimentais/diagnóstico por imagem , Poliésteres/síntese química , Poliésteres/química , Poliésteres/farmacologia , Polietilenoglicóis/síntese química , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Radiografia , Ratos , Tecnécio/química , Tecnécio/farmacologia , Tomografia Computadorizada de Emissão de Fóton Único , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Inorg Chem ; 54(4): 1728-36, 2015 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-25634699

RESUMO

The synthesis, stability, and photophysical properties of [2 + 1] Re(I)/Tc(I) complexes derived from bipyridine and a series of imidazole derivatives were investigated as a means of identifying complexes suitable for creating targeted isostructural optical/nuclear molecular imaging probes. To prepare the desired complexes, [Re(CO)3(H2O)3]Br was combined with 2,2'-bipyridine (bipy) to give [Re(CO)3(bipy)Br], which in turn was converted to the desired complexes by treatment with functionalized imidazoles, yielding crystal structures of two new Re complexes. The corresponding (99m)Tc complexes [(99m)Tc(CO)3(bipy)(L)](+) (L = imidazole derivatives) were prepared by combining [(99m)Tc(CO)3(bipy)(H2O)]Cl with the same series of ligands and heating at 40 or 60 °C for 30 min. Quantitative transformation to the final products was confirmed in all cases by HPLC, and the nature of the complexes was verified by comparison to the authentic Re standards. Incubation in saline and plasma, and amino acid challenge experiments showed that N-substituted imidazole derivatives, bearing electron donating groups, exhibited superior stability to analogous metal complexes derived from less basic ligands. Imaging studies in mice revealed that with the appropriate choice of monodentate ligand, it is possible to prepare robust [2 + 1] Tc complexes that can be used as the basis for preparing targeted isostructural optical and nuclear probes.


Assuntos
Imidazóis , Sondas Moleculares , Compostos Organometálicos , Rênio , Tecnécio , Animais , Cromatografia Líquida de Alta Pressão , Cristalografia por Raios X , Ciclização , Humanos , Imidazóis/administração & dosagem , Imidazóis/química , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Conformação Molecular , Sondas Moleculares/administração & dosagem , Sondas Moleculares/química , Compostos Organometálicos/administração & dosagem , Compostos Organometálicos/química , Rênio/administração & dosagem , Rênio/química , Tecnécio/administração & dosagem , Tecnécio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...